
How	can	you	accelerate	CI	to	speed	up	build	and	test	times	and	improve	developer	productivity?	

Last	Tuesday	I	participated	in	an	online	panel	on	the	subject	of	CI	Acceleration,	as	part	of	Continuous	
Discussions	(#c9d9),	a	series	of	community	panels	about	Agile,	Continuous	Delivery	and	DevOps.	Watch	
a	recording	of	the	panel:	

<iframe	width="560"	height="315"	src="https://www.youtube.com/embed/_q7Y708j-XU"	
frameborder="0"	allowfullscreen></iframe>	

Continuous	Discussions	is	a	community	initiative	by	Electric	Cloud,	which	powers	Continuous	Delivery	at	
businesses	like	SpaceX,	Cisco,	GE	and	E*TRADE	by	automating	their	build,	test	and	deployment	
processes.		

Below	are	a	few	insights	from	my	contribution	to	the	panel:	

How	Do	You	Define	Continuous	Integration?	
	
Fail	early,	fail	fast,	fast	as	you	can.	You	want	to	get	your	cycle	time,	in	order	to	measure	that,	
you	have	to	know	whether	you're	producing	something	valuable.	Continuous	Integration	-	you	
can	have	all	these	unit	tests,	but	until	you	actually	mix	it	together	with	something	that's	
somewhat	real,	larger	sets	of	systems,	you	really	don't	know	whether	it's	going	to	work	as	a	
whole.			
	
And	that's	really	the	key	there,	you	can't	do	any	of	that	without	automation,	so	even	though	
Continuous	Integration	is	a	philosophy,	you	really	have	to	leverage	whatever	tools	you	can	
make	available,	to	make	that	a	reality.	Trying	to	continuously	integrate	is	a	great	theory,	but	we	
just	make	too	many	mistakes.	Without	actually	having	done	something	wrong	necessarily	on	
purpose,	whereas,	you	can	automate	the	whole	process,	and	make	it	happen	over	and	over	
again	-	that's	how	you	can	ensure	that	you're	producing	what	you	think	you're	producing.		
	
Clearly,	it	should	be	a	cultural	thing,	where	you're	actually	trying	to	check	before	you	commit	
things	in	to	the	main	line,	but	another	pattern	is	everybody	using	short	lived	branches	-	your	
CM	system	supports	easy	to	use	branching,	and	then	you	use	your	CI	automation	tool	of	choice	
to	go	and	actually	do	auto-merges	across	various	branches,	especially	against	the	main	line,	and	
do	those	permutations	that	would	be	annoying	for	the	average	developer	to	do,	but	to	catch	
things	that	wouldn't	be	caught	if	people	weren’t	sharing	their	work	in	a	place	where	everybody	
could	easily	get	grasp	at.	It's	a	good	indicator	that	"Hey,	if	everything	is	building	well,	it's	going	
to	build	well	when	I	actually	push	it	up	for	real.			
	
This	would	be	where	you've	got	7,	8,	9	people	all	banging	on	things	where	they're	crossing	over,	
tens	or	dozens	of	classes,	and	doing	completely	different	capabilities	simultaneously,	so	yes,	it	
doesn't	matter	on	a	really	small	team	-	but	even	a	small	team	could	have	that	happen,	but	it's	
rare	-	the	bigger	the	team,	the	greater	the	likelihood	of	the	overlap	of	features,	collision,	where	
you're	actually	trying	to	add	orthogonal	features,	that	shouldn't	have	any	impact,	but	if	you	do	



any	refactoring	while	you're	doing	it,	you	want	to	move	the	time	when	you	have	a	discovery	of	
"Oh,	that's	no	longer	called	that	or,	you	moved	it	over	here	in	a	completely	different	class"	you	
really	want	to	get	everybody's	stuff	out	there,	you	want	them	out	there	visible	-	they	may	not	
be	in	the	trunk,	but	they're	out	there	in	the	branches,	and	they're	already	automatically	being	
compared	by	the	CI	system,	so	that	you	can	alert	everybody	early	and	say	"Hey,	somebody	
made	a	change	that	breaks	somebody	else's	working	branch".		
	
And	then,	you	know,	by	the	end	of	your	sprint	you	cycle	everything	in,	but	it’s	surprising	on	a	
larger	team,	at	certain	times	-	very	often	it	doesn't	matter	-		but	when	it	does,	every	day	counts,	
every	hour	counts	sometimes.										
	
Builds:	Tips	and	Tricks					
	
In	the	past	I’ve	had	mix	builds,	C++,	Java,	C	-	now	it's	more	Java	helping	people	out	with	those	
kind	of	things,	but	I	probably	mentioned	at	one	point	that	I	use	tools	like	Gradle,	you	should	be	
using	something	at	least	like	Maven.	Ideally,	there's	this	notion	of	"Well	the	builds	should	be	
fast",	well	that's	great,	but	that's	a	clean	build	-	what	is	it	when	I	make	one	little	change,	how	
many	ripple	effects	do	I	have?	In	lots	of	build	tools,	if	you're	not	careful,	you	make	a	change	and	
everything	re-complies,	everything	re-builds	an	artifact	downstream,	and	it	triggers.	You	have	
to	be	really	careful	to	try	and	get,	either	your	CI	system,	or	your	build	tool	itself	-	hopefully	you	
have	one	that	can	help	partition	those	off.		
	
I	remember	the	old	school	builds	of	C++	when	templates	came	in,	and	hour	long	builds	where	
not	uncommon,	and	that	was	spreading	them	out	on	multiple	machines.	So,	things	are	better	in	
technology	now,	but	it	comes	down	to	-	"How	quick	you	can	make	it	so	the	developer	doesn't	
go	"Ahh,	I	don't	want	to	make	all	these	changes	-	I'm	going	to	make	all	of	them	at	once,	
because	I	know	the	build	is	going	to	take	too	long."	
	
So	really	the	trick	is	-	focusing	with	somebody	who	pretends,	or	really	is	a	build	master,	and	
trying	to	get	your	builds	to	function	properly	-	because	the	pay	pack	is	immense,	it's	amazing	
how	much,	if	you	can	shave	off	30	seconds	a	minute,	off	from	any	kind	of	build,	you're	talking	
about	huge,	like	hour	to	minutes	-	even	for	a	regular	dev	during	the	day,	you	start	shaving	off	a	
few	minutes	here	and	there,	and	it	makes	a	big	difference	in	the	cycle	time.							
	
So	you're	generating	artifacts	of	some	sort,	and	you	should	be	storing	those,	and	reusing	them	
throughout	your	pipeline	-	we	haven't	talked	about	pipelining	yet,	but	definitely	when	you're	
doing	CI,	you	never	want	to	rebuild	the	same	item	unless	you	absolutely	have	to	at	some	later	
point	in	time.	And	then	use	that	throughout	the	different	chains	throughout	your	builds,	and	
we'll	talk	about	testing	later,	because	that's	when	you	often	use	a	lot	of	these	generator	
artifacts,	and	then,	if	you've	already	got	it	pre-built,	grab	it	and	reuse	it	and	go.	It's	only	when	
you've	actually	got	a	version	change,	that	that	you	should	have	to	have	any	compilation	
occurring.		
	



That's	not	true	of	a	lot	of	systems	but	it's	getting	more	true	because	people	are	starting	to	use	
the	contemporary	tools	and	make	change,	it's	not	uncommon	for	everybody	to	have	their	own	
Artifactory,	or	some	type	of	Nexus	server	to	contain	that,	publish	to	it,	I	mean	it	used	to	be	
considered	"Wow",	but	now	it's	the	norm.	And	it	absolutely	should	be,	and	your	CI,	whatever	it	
is,	should	be	able	to	pull	from	it,	as	necessary,	or	leverage	your	build	tool	-	they	should	be	
cooperative.								
																
Testing	
	
We've	got	the	separations	and	the	unit	integration,	and	acceptance	test	-	essentially,	your	unit	
test	should	be	so	fast	you	should	break	the	build	if	they're	not	fast	enough.	Make	your	devs	not	
do	IOx's,	all	these	other	things,	they're	supposed	to	be	focusing	on	those	classes.	And	it	makes	a	
big	impact	if	you	make	sure	that	your	devs	are	running	the	unit	test	every	single	compile,	it	
should	be	considered	part	of	the	compile.	
	

	


